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Abstract. Remote management is essential for wireless sensor networks
(WSNs) designed to run perpetually using harvested energy. A natural
division of function for managing WSNs is to employ both an in-band
data plane to sense, store, process, and forward data, and an out-of-band
management plane to remotely control each node and its sensors. This
paper presents SRCP, a Simple Remote Control Protocol that forms the
core of an out-of-band management plane for WSNs. SRCP is motivated
by our target environment: a perpetual deployment of high-power, ag-
gressively duty-cycled nodes capable of handling high-bandwidth sensor
data from multiple sensors. The protocol runs on low-power always-on
control processors using harvested energy, distills an essential set of prim-
itives, and uses them to control a suite of existing management functions
on more powerful main nodes. We demonstrate SRCP’s utility by pre-
senting a case study that (i) uses it to control a broad spectrum of
management functions and (ii) quantifies its efficacy and performance.

1 Introduction

Perpetual wireless sensor networks (WSNs) consist of nodes that harvest envi-
ronmental energy (e.g., solar, wind, thermal, vibration) to indefinitely sustain
data collection, storage, processing, and transmission without physical inter-
action 1. Perpetual operation is ideal for WSNs composed of nodes that are
time-consuming to construct and deploy. However, the long lifetime of perpetual
WSNs elevates the importance of remote management functionality. Effective
remote management has three characteristics:

– Visibility. A sensor node is visible if its state is known or can be queried.
High visibility permits simple, direct monitoring of each node with high ac-
curacy, while low visibility forces complex, indirect monitoring based on col-
lected sensor data, past node states, or neighbor states. Visibility is essential

1 This research was supported in part by an UMass President’s Science and Technol-
ogy award and NSF grants CNS-0626873, CNS-0615075, CNS-0520729, and EEC-
0313747. We also acknowledge Deepak Ganesan for providing us feedback on early
versions of this work.



(a) Management Plane Overview (b) Power Consumption

Fig. 1. Our prototype (a) uses a management plane. Power states are shown in
(b) from a typical sunny summer day and cloudy winter day.

for discovering the software bugs or hardware faults that impair WSN op-
eration; recent work proposes elevating low-cost visibility to a fundamental
WSN design principle [21].

– Accessibility. A sensor node is accessible if its state is known or can be
queried, and can also be altered. High accessibility permits simple, direct re-
mote node maintenance, including altering application-level software, kernel-
level software, and hardware states (e.g., power states). Low accessibility
increases the scope of problems that require physical access to a node.

– Interactivity. A sensor node is interactive if its state is both visible and
accessible with tolerable latency. High interactivity permits a controller to
react to visible changes in the WSN by accessing a node and changing its
state, and quickens the upgrade-test-debug development cycle required to
produce robust software. Low interactivity limits the WSN’s capability to
adapt its operation to unexpected operational or environmental changes, and
slows or impairs the software development cycle.

Visibility, accessibility, and interactivity are highly correlated with a node’s
duty cycle, since a controller is unable to query or alter state while a node is
powered down. As a result, simultaneously satisfying all three characteristics is
challenging for resource-constrained WSNs. Previous approaches primarily ad-
dress only a single aspect of remote management using in-band techniques that
share a single wireless channel and node processor between both management-
centric and data-centric tasks [11, 18, 20, 21, 23, 24]. In-band approaches are in-
vasive: they consume limited resources that interfere with the primary tasks of
sensing, storing, processing, and transmitting data.

Out-of-band management isolates management tasks on a separate always-on
control processor and radio attached to each node. The approach divides WSN
functions between a data plane that senses, stores, processes, and transmits
data, and a management plane that ensures continuous visibility, accessibility,
and interactivity. The division takes advantage of the natural distinction between



control traffic (short infrequent interaction) and data traffic (bulk data transfer).
Out-of-band management is also a common technique for diagnosing and repair-
ing node failures in other distributed systems, such as networks and data centers.
While the energy costs of using a separate per-node control processor and radio
preclude out-of-band management in some scenarios, the approach is well-suited
for high-power WSNs that handle data from one or more high-bandwidth sensor
streams and engage in computationally-intensive processing.

Examples of such high-power sensor applications include networks of weather
sensing radars [14] and camera networks [19]. Our target application is moni-
toring river ecologies using a diverse array of connected sensors, including un-
derwater camera, hydrophone, water quality, geologic imaging, and temperature
sensors. Since high-power WSNs already require enough harvested energy to sup-
port a powerful node platform (e.g., an iMote2, Gumstix, or embedded PC-class
node), it is feasible to continuously operate a less powerful control processor
and radio that uses a small fraction of the main node’s power (e.g., a TinyNode,
TelosB, or MicaZ mote) and has a minimal impact on the data plane’s operation.

To illustrate, Figure 1(a) provides an overview of our prototype’s manage-
ment plane, which uses a Tinynode with an XE1205 radio as the control processor
and a Gumstix [1] with a PXA-based microcontroller and commodity 802.11b
WiFi radio as the high-power main node. The XE1205’s long range (1.43 miles
at 4.8kbps [6]) makes it particularly attractive for out-of-band management.
Importantly, the Tinynode control processor is also able to control the sensors
directly without consuming additional energy by powering the main node. Fig-
ure 1(b) shows average energy production from an attached 4”x8” solar panel
on a typical sunny summer day and cloudy winter day compared with the proto-
type’s average energy consumption in different power states. The measurements
demonstrate that even on a worst-case cloudy winter day the control processor
is able to remain on continuously using a small amount of buffered energy from
a battery, while the main node must remain mostly off due to the high energy
cost of operating its processor, radio, and sensors.

Contributions. This paper presents SRCP, a Simple Remote Control Protocol
for use on low-power control processors and radios that forms the core of a non-
invasive out-of-band management plane for perpetual high-power WSNs. A key
design principle of SRCP is to expose a narrow set of management primitives
without defining management services; as a result, much of its power derives
from connecting controllers to existing management functions provided by high-
power hardware platforms and their software. SRCP’s narrow set of primitives
is able to unify a broad spectrum of management functions. In particular, we
show that the protocol is able to monitor the health of the network at fine
granularities (1 update every 250 milliseconds for a 5 hop network), support
interactive debugging sessions using a low-bandwidth radio (less than 2 second
latency per directive), and non-invasively transfer bulk software updates using
a DTN routing protocol.



2 Related Work

In-band Management. In-band techniques improve visibility, accessibility, and
interactivity within the confines of a node’s energy constraints and duty cycle,
and are orthogonal to SRCP, which assumes an always-on control processor and
radio.

Sympathy [18] and PCP [21] improve visibility indirectly by correlating lack
of sensor data from a node with failure and then diagnosing the root cause by
traversing a decision tree of likely possibilities. NodeMD addresses visibility, by
using a runtime detection system to detect faults, and interactivity, by catching
many faults before they disable the system and enabling a debug mode [11].
Clairvoyant [24] and Marionette [23] also improve interactivity by enabling in-
teractive debugging. In contrast, SRCP is able to connect operators to existing
debuggers available for commodity OSes, such as GDB, to enable interactive
debugging of data plane software.

Dissemination techniques for efficiently updating node software, including
Trickle [13] and Deluge [10], improve accessibility. Since we target high-power
WSNs using complete network stacks for SRCP, more general communication
techniques, such as end-to-end TCP connections or DTN-style store-and-forward
paradigms, are possible for both disseminating data plane software updates and
transmitting sensor data. Finally, SNMS recognizes the importance of separating
the management plane from the data plane by decoupling them to the extent
possible using an in-band approach and implementing a broad set of management
services [20]; SRCP completely decouples the two planes and provides narrow
primitives for connecting to existing management services.

Out-of-band Management. Out-of-band management is a necessity in sen-
sor testbeds that support multiple experiments over time, as in MoteLab [22]
or Trio [7]. These testbeds utilize a back-channel or control processor to pro-
vide continuous visibility and access to nodes. However, the main purpose of
the back-channel is to enforce the testbed’s scheduling policies, ensuring that
no experiment monopolizes testbed resources, and to deploy experiment-specific
software. Perhaps most related to SRCP is the Deployment Support Network
(DSN), which mitigates the need for a wired back-channel in testbeds by attach-
ing a separate battery-powered control processor and radio, called a DSN-node,
to each main testbed node [8].

In contrast to DSN, our target application is a perpetual deployment, which
warrants a focus on a simple protocol suitable for low-power control processors
and radios that adaptations to DSN-node software do not easily address. DSN-
nodes implement common testbed services, such as event logging, interactive
debugging, and software distribution, whereas SRCP is protocol-centric and sim-
ply enables remote access to software services and low-level hardware functions
that already exist for high-power nodes. The choice of radio for DSN highlights
the different focus: DSN-nodes use Bluetooth for their backbone wireless net-
work while we choose the XE1205. The XE1205 is a low-power, long-range, and
low-bandwidth radio that allows our management plane to operate over longer
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Fig. 2. An SRCP agent runs on each control processor and a slave agent runs
on each main node.

distances than short-range Bluetooth radios, decreasing both the incidence of
network partitions due to control processor failure—since it may be possible to
“hop over” failed nodes—and the available bandwidth for the management plane.
The XE1205 is also not invasive: it minimally impacts node energy consumption
and eliminates traffic conflicts with a shorter range main node radio.

While SRCP does assume dual-radio/dual-processor nodes, previous work on
these systems focuses primarily on dynamically assigning tasks to components
to adjust the energy/performance ratio on specific hardware platforms [3, 5, 16].
SRCP’s focus is more narrow but also more general: it defines a simple proto-
col that is a foundation for remote management of a broad range of hardware
platforms with control processors. In particular, Leap is a hardware/software
architecture using two battery-powered processors and radios that shares our
focus on high-power WSNs [16]. Leap and SRCP share a common goal but a
different focus: SRCP is a simple, extensible, and hardware-independent proto-
col that distills a small set of core remote management functions for always-on
control processors, while Leap combines a hardware platform that supports fine-
grained energy monitoring with algorithms for dynamically scheduling tasks to
processors to minimize energy consumption.

3 SRCP: A Simple Remote Control Protocol

SRCP is inspired by SNMP, a standard for managing network-attached devices.
SNMP’s primary use is monitoring wired network devices, while SRCP’s primary
use is monitoring and controlling wireless network devices using an external
control processor. Figure 2 shows an overview of SRCP’s node architecture and
software artifacts. Each control processor runs an instance of an SRCP agent
that implements the protocol. A slave agent also runs on each main node and
interacts with its agent to permit interaction with the main node’s software
services.

SRCP is a basis for both out-of-network and in-network control. With out-of-
network control, an SRCP controller injects protocol messages into the manage-
ment plane from a well-connected base station within range of at least one agent.
For example, the controller may disseminate protocol messages that power down
all main nodes during uninteresting periods (e.g., at night in a camera network),



or power up main nodes on-demand during interesting periods of plentiful energy
(e.g., to apply synchronized software updates or initiate immediate sensor data
collection and transmission).

With in-network control, one agent issues protocol messages to another agent
to control its behavior. For example, an agent for a node with a full buffer of
sensor data could issue a control message to activate an upstream node in order
to transmit the data and free buffer space for additional sensing. The use of
SRCP for in-network control requires inter-node cooperation to ensure that the
decisions made by agents using their local knowledge result in acceptable global
WSN-wide outcomes that efficiently use energy, network, processing, and storage
resources. While the protocol does support in-network control, techniques for
inter-node cooperation are outside the scope of this paper; instead, we focus on
out-of-network control using a controller running at a base station.

3.1 Protocol

The protocol is based on short control messages, which may be fragmented into
one or more transmitted packets. Each message is sent by an SRCP controller to
one and only one agent, and directs the agent to take a specific action at a node
that produces an outcome. The one-to-one communication paradigm is simple
and enables management of each node as a distinct entity, rather than in-band
approaches that expose WSNs as a single aggregate. Upon message receipt, the
agent invokes the specified action and then transmits a response message to the
controller that encapsulates an acknowledgement of control message receipt, an
indication of the action’s success or failure, and an action-specific payload that
encodes a description of its outcome.

A key goal of SRCP is to separate remote management primitives from spe-
cific remote management services; the primitives are general enough to serve as a
foundation for monitoring any hardware platform or controlling any software on
the main node. As a result, SRCP is extensible since some actions require hard-
ware or software support from the main node or attached sensors that may vary
across platforms. Developers register hardware-related actions (Execution and
State) prior to deployment by defining a unique index number and linking the
action’s logic to the implementation at compile time, while controllers are able
to register other actions (Conditional and Connection) in situ post-deployment.

3.2 Primitives

The protocol distills actions into four fundamental classes of remote manage-
ment primitives: Executions, States, Conditionals, and Connections. Each class
consists of one or more distinct actions, where the controller and agent associate
each action with a unique integer index. Control messages include this index,
which also identifies the message class, as part of the message payload to direct
the agent to act on a specific Execution, State, Conditional, or Connection.

Executions. An execution is an action that affects the operational state of



the main node or any attached sensors. In particular, executions make visible
hardware/software control of the main node and attached sensors that would
otherwise not be available when the main node is inactive and powered down.
For instance, our reference implementation includes an execution action that
directs the slave agent to invoke an arbitrary process on the main node and re-
turn its standard output and standard error in a response message. If the main
node OS supports fine-grained resource control (e.g., Resource Containers [4] or
PixieOS tickets [15]), then execution actions may also dynamically control node
energy, CPU, memory, or bandwidth usage. Other examples include:

– Power-on Main Node; Power-off Main Node; Sleep Main Node (ACPI S3);
Hibernate Main Node (ACPI S4); Power-on Main Radio; Low-power Main
Radio; Power-off Main Radio; Main Node Process Execution; Main Node File
Transfer; Take Picture; Transfer Picture to Flash; Main Node Alive Ping;
Reboot Main Node Standard Kernel; Reboot Main Node Clean Kernel;

The payload of the control message includes its index along with execution-
specific data, while the payload of the response message includes details of the
execution’s outcome.

States. Actions may read, and in some cases write, state variables stored by
the control processor using its limited on-board memory. SRCP divides state
variables into two categories: environmental states and management states. The
value of environmental state, such as the current battery level, is dictated by
the environment and is read-only, while the value of management state, such as
a routing table entry, is writeable remotely using a control message. Examples
of environmental and management states include:

– Environmental States. Battery Energy Level; Solar Power Production;
Platform Power Consumption; Main Node Reboot Counter; Control Proces-
sor Reboot Counter; Current Time;

– Management States. Voltage Level; Flash Memory (via JTAG); Main
Node Processor Registers (via JTAG); Routing Table Entry; Conditional
Period; Environmental State Update Period;

The agent automatically monitors and updates the value of environmental
states at a predefined time granularity. The payload of a state-based control
message includes its index, a flag indicating a read or write operation, and a
value if applicable. The response message payload includes the value of the state
and any acknowledgements.

Conditionals. In some cases, it is necessary for an agent to react immediately
to local conditions or at a prespecified time. A Conditional action invokes an
execution or state-based action based on a condition. The condition is a boolean
expression composed of environmental or management states and boolean op-
erators. The protocol supports two conditional types: one-time and continuous.
A one-time Conditional action executes a single time when a condition is true,



while a continuous Conditional action executes every time a condition is true
every configurable time period. The controller is able to use control messages
to dynamically add, remove, or modify an action’s condition. The payload of a
Conditional control message includes an index, a flag indicating whether to set
a new condition or delete an existing one, an Execution or State action to exe-
cute, and the condition. The response message simply acknowledges the action’s
success or failure. Note that once a conditional is set, the controller will receive
asynchronous response messages associated with its Execution or State actions.

Connections. Long-lived interactive sessions between a controller and a main
node require reliable end-to-end communication not possible using short con-
trol messages. To accommodate interactive sessions, the agent forwards packets
marked as connection actions directly to its slave agent. These packets are opaque
to the agent and are only interpreted by the slave agent; the intent is to support
network layer tunneling and end-to-end connections between the controllers and
slave agents, which may both implement complete network stacks.The payload
of a connection packet includes its index along with opaque data interpreted by
the slave agent (e.g., TCP packets). The payload of the response message in-
cludes its index along with opaque data interpreted by the controller (e.g., TCP
acknowledgements).

4 Implementation

We have written a reference implementation of SRCP 2. While the protocol
is platform-independent, the reference implementation is intended for a mote-
class control processor with a Linux-capable main node and supports an agent
for TinyOS and a slave agent for Linux. The implementation utilizes hardware
features (e.g., JTAG, numerous power states) that require a compatible hardware
platform, although its core functions are portable to other platforms utilizing a
TinyOS-based control processor and Linux-based main node.

4.1 Hardware Prototype

Since many of the protocol’s functions interact with specific hardware features
of the main node and sensors, we built a hardware prototype (Figure 3(a))
that fully utilizes it. The prototype is a general-purpose node platform for high-
power WSNs; it uses a Tinynode control processor with a low-power MSP430
microcontroller, 512Kb of on-board flash, and an XE1205 radio. The XE1205
radio is attractive for out-of-band management since it does not interfere with
the data plane’s 802.11b radio, and is able to trade bandwidth for range. The
measured range of the radio has been shown to be 2.3 kilometeres (1.43 miles)
at a bandwidth of 4.8kbps, exceeding the range of the Mica2 or Telos by at least
a factor of 4 [6]. Additionally, we also evaluated the implementation on TelosB
motes using the more capable CC2420 radio.
2 http://lass.cs.umass.edu/



(a) Hardware Prototype (b) Block Diagram

Fig. 3. A photograph (a) and a block diagram (b) of our hardware prototype.

The prototype uses a Gumstix with a PXA-based microcontroller and a com-
modity 802.11b WiFi radio for the main node. The Gumstix runs a instance of
Linux that supports standard Linux utilities. We attach the CMUCam3 imag-
ing sensor as a representative example of a high-bandwidth sensor [19]. The
prototype also includes external flash for additional Gumstix storage and a real-
time clock that the Gumstix and Tinynode use to periodically synchronize their
notion of time. Figure 3(b) shows a block diagram of the prototype. Communi-
cation between the Tinynode’s agent and the Gumstix’s slave agent occurs over
a serial RS-232 connection. The main powerboard regulates charging from en-
ergy produced by a SPE-350-6 SolarWorld solar panel, stores it in 3.7V Ultralife
rechargeable battery with a capacity of 6.1 Amp-hours, and distributes it to the
Tinynode, Gumstix, and CMUCam3 sensor. The materials for each prototype
node cost approximately $650.

To increase management flexibility, the Tinynode is capable of independently
controlling functions on the Gumstix, its WiFi radio, and the CMUCam3 sensor.
A modular hardware platform, such as our prototype or LEAP [16], is a useful
paradigm for high-power WSNs, since they allow a controller to independently
power and operate each component. Our experiences demonstrate that SRCP
is flexible enough to support a range of functions on different devices in such a
platform.

4.2 Software Prototype

The SRCP reference implementation, described below, includes an agent written
in NesC for TinyOS, a slave agent written in C for Linux, and a simple controller
for a base station written in C.

– Agent. The agent implements the protocol from Section 3 and supports the
example Execution and State actions from that section. We discuss details
of network communication in our prototype (e.g., routing, packet format) in
Section 4.3.



– Slave Agent. The slave agent runs on Linux and integrates with the TinyOS
serial forwarder to send and receive control messages from the agent. In ad-
dition to interpreting Connection messages, the slave agent includes support
for specific Execution actions that integrate with software supported by the
node. For instance, our implementation includes support for executing pro-
cesses and receiving standard error and out using control messages, and
direct file transmission over the management plane. Both actions are suit-
able for short-lived interactions (e.g., quick process execution or small files),
or as a “last resort” for connecting to the main nodes when communication
via WiFi is impossible. As discussed in Section 5, our slave agent also in-
corporates a DTN routing reference implementation for disseminating bulk
software updates and gathering sensor data.

– Controller. The controller includes a management shell and GUI dashboard
to manually inject control messages and view their responses. Designing poli-
cies that dynamically adjust the WSN’s behavior based on both environmen-
tal conditions and data requirements is the subject of future work. The base
station includes both an 802.11b WiFi radio for data plane communication
and a root Tinynode with an XE1205 radio running an agent connected
over an RS-232 serial link. The controller integrates with the TinyOS serial
forwarder to forward control messages over the serial link to a “first-hop”
SRCP agent that routes them to their destination using the XE1205 radio.

IP Tunneling. To support TCP/IP flows between a controller and slave agent
using Connection messages, both include a Control Message/IP proxy for estab-
lishing IP tunnels. The proxy (i) captures egress IP packets, fragments them into
control or response messages, and forwards them to its agent for transmission
over the management plane and (ii) reassembles ingress control messages into
IP packets and injects them into the network stack.

The proxy currently utilizes the Linux Netfilter library for capturing egress
packets from the network stack and Linux raw sockets for injecting ingress
packets back into the network stack, although we are exploring the benefits
of TUN/TAP-based implementation. We assign the base station and Gumstix
nodes an IP address in the 172.16.0.0/16 subnet; the proxy then uses standard
iptables rules to capture all packets destined for the subnet for tunneling. While
SRCP could use the an implementation of 6LoWPAN to forward IPv6 packets
without tunneling them, the XE1205 radio does not support 6LoWPAN’s stan-
dard 127 byte packet size [17]. 6LoWPAN is not necessary for our prototype
since the control processor does not serve as a connection end-point, and the
Gumstix main node supports a complete network stack.

Since long-range radios cannot sustain high bit rates, the proxy includes an
implementation of Van Jacobson header compression (IPcomp) from RFC 1144
to reduce the length of TCP/IP from 40 bytes to 1 or 2 bytes on average. IPcomp
is useful for reducing overhead in interactive sessions composed of a series of
small packet transmissions (e.g., ASCII characters), where TCP/IP headers can
consume up to 50% of a TCP packet’s size. Section 5 quantifies the effect of
IPcomp on interactivity. Additionally, we used suggestions from RFC 3150 to



Primitive Command Power (µjoules) Max
Execution Wakeup Gumstix 0.551 1.47x1011

Set Conditional Wakeup Gumstix in 5 minutes 0.580 1.40x1011

Read State Sensing rate 13.92 5.84x109

Write State Sensing rate 13.97 5.82x109

Connection Transmit 28 byte packet 0.560 1.45x1011

Table 1. Max shows the maximum number of times the Tinynode command
could be executed based on our prototype’s battery with capacity 81, 360 joules.

set TCP parameters for low speed and unreliable lengths (e.g., lowering TCP
Maximum Segment Size (MSS) from its default of 1500 bytes).

4.3 Management Plane Communication

A radio for out-of-band management values transmission range and energy effi-
ciency over bandwidth, since disconnected nodes impede visibility, accessibility,
and interactivity. The XE1205 radio we choose for our prototype imposes limita-
tions on the maximum possible packet size: the radio does not reliably support
packets larger than 28 bytes (the default AM packet size in TinyOS) due to a 16
byte send/receive FIFO buffer that requires 50 µsec to empty 3. As a result, our
implementation imposes limits on header sizes and does not provide a reliable
transport protocol, as discussed below.

Packet Format. Each control message packet includes a minimal header
with fields for a message identifier, a sender’s identifier, a destination’s identifier,
a fragment number, a message length, and a time-to-live value. Each identifier
uniquely identifies the message, sender, and destination; the destination uses
the fragment number and message length to reassemble the message; the time-
to-live value defaults to the network’s diameter and ensures that the network
eventually drops packets that cannot reach their destination. We use 2 bytes for
the message length field and a single byte for the remaining fields. Thus, our
implementation uses 7 bytes out of each 28 byte packet for headers (25%) and
21 bytes for the payload (75%). The sender identifier, destination identifier, and
time-to-live fields must increase to scale the protocol to networks larger than
255 nodes or with a diameter greater than 255.

Reliable Communication. While agents acknowledge messages using re-
sponses, as described in Section 3.1, the controller and agent do not acknowl-
edge packets end-to-end, since acknowledgements at each level of the network
stack consume bandwidth. The implementation uses only simple link-layer ac-
knowledgments provided by TinyOS’s AM abstraction to ensure reliable per-hop
packet transmission. An agent retransmits each packet if it does not receive a
link-layer acknowledgement within timeout t, and after k retransmissions it drops
the packet. Without end-to-end packet acknowledgements, the loss of a single

3 The time taken to empty the buffer 3 times per single packet reception or transmis-
sion results in unacceptable loss rates.
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Fig. 4. Measurements of the percentage of update losses (a) using Conditional
actions to monitor node health over a range of intervals for different network
sizes. The observed health update interval (b) is the interval between health
updates seen at the controller.

packet prevents the delivery of an entire control or response message. As a re-
sult, the implementation limits many control and response messages to a single
packet, although the size of some messages, such as an encoded outcome in a
response message, may be an arbitrary length.

Routing. Finally, agents must be able to route packets from the controller to
the packet’s destination. Our implementation assigns each agent a simple static
identifier, and agents forward any received packet with a destination identifier
that does not match its own to the next hop. Each agent maintains a routing
table as special management states. To determine the next hop, the agent looks
up the destination identifier in its set of management states, and interprets the
value as the next hop identifier. The controller is able to alter routes dynami-
cally using State actions, although we have not explored dynamic approaches to
routing.

5 Evaluation

We evaluate SRCP with a case study that exemplifies the actions we envision a
WSN controller using to manage a network, and quantifies SRCP’s performance
along three axis: visibility, interactivity, and accessibility.

Visibility. Wachs et al. define a visibility metric as the energy required to
diagnose a failure [21]. Table 1 reports microbenchmarks of the CPU time and
energy cost to a Tinynode in our prototype to execute an action from each
class, and demonstrates that individual actions are non-invasive and impose little
energy cost on the data plane. The primary energy cost derives from keeping the
control processor active (see Figure 1(b)) and not from executing individual
actions.
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Fig. 5. Telnet sessions using IPcomp and 100 byte packets on the CC2420 radio
perform best for interactive GDB debugging sessions (a). IPcomp has a factor
of 2 impact on total bytes transmitted (b).

Since enough energy exists to continuously operate SRCP’s control proces-
sor and radio, an energy-centric visibility metric is not appropriate. Instead,
SRCP’s primary constraint is management plane network bandwidth; as a re-
sult, we define visibility as the rate (messages/second) at which a controller
is able to observe changes in the state of the network. The frequency of node
health updates is a direct measure of visibility since they expedite the discovery
of anomalies or failures.

In Figure 4(a), we observe the loss rate for node health updates as a function
of their send rate. For the experiment, we use a configuration of 5 nodes in a
simple chain topology, where each node is 15 meters from its neighbors. Each
node uses a Conditional action that reports battery level and pings the main node
for liveness; note that the health updates could include any of the management
or environmental states listed in Section 4. The x-axis shows the health update
interval for each node and the y-axis shows the percentage of updates lost in the
management plane and not delivered to the controller. The result demonstrates
that the prototype is able to sustain an update interval of 250 milliseconds in a 5
hop network without experiencing significant losses due to network congestion,
allowing a controller to detect any node anomalies (e.g., low battery level, failed
main node) at a 250 millisecond granularity. In Figure 4(b), we plot, for the same
experiment, the observed average health update interval seen at the controller,
demonstrating that the observed rate is close to the expected interval even when
experiencing congestion-related losses.

Our results indicate that the management plane should be able to monitor
a network of N nodes at an interval of 250N/5 == 50N milliseconds; for a net-
work of 100 nodes this translates to an update interval of 5 seconds. In practice,
we expect the controller to observe the entire WSN at a coarse granularity and
focus in on specific regions with a finer granularity once an anomaly is detected.

Interactivity. Operators must diagnose and repair problems in the data plane



that impair operation. Rather than indirectly diagnosing a problem, as in Sympa-
thy [18], SRCP uses Connection actions to enable interactive debugging sessions
on the main node. As with visibility, the primary constraint is network band-
width. Figure 5(a) measures the latency for a representative interactive GDB
session using a set of common debugging commands over both Telnet and SSH
with and without IPcomp in a 5 hop network 4. Since the XE1205 radio prevents
packet sizes greater than 28 bytes, we also show results using TelosB motes with
a CC2420 radio to study the impact of larger packet sizes on latency.

The measurements show that interactive sessions using Telnet and IPcomp
are possible for both radios. However, the XE1205’s 28 byte packet size limitation
prevents tolerable interactive sessions for SSH with or without IPcomp. IPcomp
has a significant impact on both Telnet and SSH, improving latency by at least
a factor of 2 for all commands. Figure 5(b) shows total bytes sent and received
for both sessions. In the best case—Telnet with IPcomp—the interactive latency
is less than 3 seconds for each command for the XE1205 and less than a second
for the TelosB. Figure 6(a) shows that the session latency increases modestly
with the number of network hops; extrapolating the trend indicates that a 30
hop network path should experience sub-10sec latency for the total session with
the XE1205 using Telnet/IPcomp.

Accessibility. Once an operator diagnoses a problem using an interactive de-
bugging session it may be necessary to update the node’s software. SRCP enables
accessibility at each level of a node’s hardware/software stack. At the lowest level,
our implementation interacts with the Gumstix JTAG controller to provide re-
mote access and control of its hardware, as proposed in [9].

The SRCP agent uses an execution action to expose remote access to JTAG
through a set of 4 GPIO pins; in a conventional setting, these GPIO pins would
connect to a PC through a USB or parallel-port JTAG connector. JTAG inte-
gration enables two capabilities: (i) direct control to read and write processor
registers, including the instruction register, and clock the CPU and (ii) direct
reading and writing of Flash memory. The first capability is useful for running
hardware diagnostics on nodes without an operational OS, while the second ca-
pability is useful as a “last resort” for reading the state of flash off a failed node
or writing flash directly to reconfigure a failed node from scratch (e.g., install a
new bootloader/minimal kernel). Our microbenchmarks show that it takes 205.3
seconds to write the Gumstix’s 163kB uBoot bootloader to Flash one word at a
time in a single hop network.

At the next level of the stack, our implementation integrates with the Gum-
stix’s uBoot bootloader to implement a SafeBoot mechanism as an Execution
action. SafeBoot allows the controller to select either a “safe” kernel or a stan-
dard kernel when rebooting a node. The safe kernel is preloaded on Flash and
is read-only, while the controller may update and modify the standard kernel to

4 The communication cost of the remote GDB protocol, which transfers individual
assembly instructions, consumes enough network bandwidth to prevent tolerable
interactive sessions.
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Fig. 6. Latency for interactive sessions increases modestly with the number of
network hops (a). We use DTN (b) to opportunistically and non-invasively trans-
fer bulk software updates in the data plane.

upgrade drivers or propagate patches. To initiate SafeBoot, the SRCP agent sets
a GPIO pin on the Gumstix prior to applying power; the mechanism requires a
minor modification to uBoot to check the pin state prior to boot to determine
the appropriate kernel. A controller may also use the SafeBoot mechanism or
the reboot mechanism in conjunction with Conditional actions to implement
watchdog or grenade timers that periodically bring nodes to a clean state.

At application-level, our slave agent incorporates the reference implemen-
tation of DTN2 for non-invasive bulk software updates [2]. Software updates
represent the one area where the management plane, due to bandwidth limita-
tions, leverages the data plane for tasks that are not data-centric. Rather than
requiring the controller to coordinate activation of every upstream node to up-
date a downstream node’s software using direct TCP connections, which would
impact the operation of the data plane, we use DTN to opportunistically route
data as main nodes become active. Figure 6(b) compares the latency to transfer
different size files over DTN and TCP in the data plane and using an SRCP
Execution action in the management plane. The benchmark demonstrates that
the management plane is not suitable for software updates or other bulk data
transfers (6kb takes 38sec over a single hop), and that, while not performing as
well as TCP, DTN is a useful tool for non-invasive bulk data transfer over the
management plane (5MB takes 200sec over 5 hops).

6 Conclusion

The energy demands of emerging high-power WSNs permit non-invasive out-of-
band management through an always-on control processor powered by harvested
energy. SRCP enables the paradigm using agents to monitor or change a node’s
operational, environmental, and management state and connect to its software
services. Our evaluation shows that SRCP’s primitives unify a broad range of
management functions, and its performance is acceptable and non-invasive. .
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